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Group Analysis in Neurolmaging: why big models?

<> Various group analysis approaches
o Student’s t-test: one-, two-sample, and paired
o ANOVA: one or more categorical explanatory variables (factors)
o GLM: AN(C)OVA
o LME: linear mixed-effects modeling
< t-tests not always practical or feasible
o Too tedious when layout is too complex
o Main effects and interactions: desirable
o When quantitative covariates are involved
<> Advantages of big models: AN(C)OVA, GLM, LME
o All tests in one analysis (vs. piecemeal t-tests)
o Omnibus F-statistics
o Power gain: combining subjects across groups



Piecemeal t-tests: 2 x 3 Mixed ANCOVA

< Explanatory variables
o Factor A (Group): 2 levels (patient and control)
o Factor B (Condition): 3 levels (pos, neg, neu)
o Factor S (Subject): 15 ASD children and 15 healthy controls
o Quantitative covariate: Age
< Multiple t-tests
o Group comparison + age effect
o Pairwise comparisons among three conditions

o Effects that cannot be analyzed
o Main effect of Condition
o Interaction between Group and Condition
o Age effect across three conditions



Classical ANOVA: 2 x 3 Mixed ANCOVA

o Factor A (Group): 2 levels (patient and control)
o Factor B (Condition): 3 levels (pos, neg, neu)
o Factor S (Subject): 15 ASD children and 15 healthy controls
o Quantitative covariate (Age): cannot be modeled with ANOVA
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Univariate GLM: 2 x 3 mixed ANOVA

o Group: 2 levels (patient and control)

o Condition: 3 levels (pos, neg, neu) Difficult to incorporate covariates
o Subject: 3 ASD children and 3 healthy controls
Subj Xo X1 Xo X3 X1 X5 Xe¢ X7 Xs Xo

1 ,311 1 1 1 0 1 0 1 0 0 0 (511
1 ( [312 \ ( 1 1 0 1 0 1 1 0 0 0 \ ((512
1 513 1 1 -1 -1 -1 -1 1 0 0 0 (513
2 [321 1 1 1 0 1 0 0 1 0 0 (521
2 522 1 1 0 1 0 1 0 1 0 0 (Oé()\ (522
2 /323 1 1 -1 -1 -1 -1 0 1 0 0 1 (523
3 ,331 1 1 1 0 1 0 -1 -1 0 0 9 (531
3 632 1 1 0 1 0 1 -1 -1 0 0 3 (532
3 [ 22 o 1 1 -1 -1 -1 1 -1 -1 0 0 X4 ;-g
4 o [T 11 0 1.0 0 0 1 0 a | s
1 Bs 1 -1 0 1 0 =1 0 0 1 0 g S40
4 B43 1 -1 -1 -1 1 1 0 0 1 0 (0% (543
) [551 1 —1 1 0 —1 0 0 0 0 1 g (551
5| Bso 1 =10 1 0 -1 0 0 0 1 |\a/ |05
5 B53 1 -1 -1 -1 1 1 0 0 0 1 053
6 Be1 1 -11 0 -1 0 O 0 -1 -1 J61
6 662 1 —1 0 1 0 —1 0 0 -1 -1 (562
6 \Bs) \1 -1 -1 -1 1 1 0 0 -1 -1 563 )




Our Approach: Multivariate GLM

o Group: 2 levels (patient and control)

o Condition: 3 levels (pos, neg, neu)

o Subject: 3 ASD children and 3 healthy controls
o Age: quantitative covariate
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Univariate GLM: popular in neuroimaging

< Advantages: more flexible than the method of sums of squares
o No limit on the the number of explanatory variables (in principle)
o Easy to handle unbalanced designs
o Covariates can be modeled when no within-subject factors present

< Disadvantages: costs paid for the flexibility
o Intricate dummy coding

o Tedious pairing for numerator and denominator of F-stat
Proper denominator SS
Can’t generalize (in practice) to any number of explanatory variables
Susceptible to invalid formulations and problematic post hoc tests

o Cannot handle covariates in the presence of within-subject factors
o No direct approach to correcting for sphericity violation
Unrealistic assumption: same variance-covariance structure
< Problematic: When residual SS is adopted for all tests
o F-stat: valid only for highest order interaction of within-subject factors
o Most post hoc tests are inappropriate



Group Analysis: when GLM is not enough?

< Example: 5 factors + 1 covariate
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3 between-subjects factors

- Group: adult, child; Diagnosis: healthy, anxious; Scanner: scanners 1 and 2

2 within-subject factors: 3 x 3 at the individual level
- Stimulus category: human, animal, tool; Emotion: pos, neg, neu

1 quantitative covariate: Age
> 200 post-hoc tests + F-stats for main effects and interactions
Piecemeal t-test approach would not work

<> Three difficulties: most packages cannot properly handle

O

Number of explanatory variables (factors and covariates): 6

o Covariates in the presence of within-subject factors

o Sphericity violation when > 2 levels for a within-subject factor

No direct method available under GLM
Presumption: same variance-covariance structure across the brain



Multivariate GLM for Univariate GLM / AN(C)OVA

<> Classical multivariate testing: MAN(C)OVA

o Centroid testing for a within-subject factor with m levels
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Multivariate GLM for Univariate Testing

< Univariate testing (UVT) for AN(C)OVA under MVM
o F: tr[H(R'R) '] / tr[E(R'R)] scaled by DFs
<> Bonuses in terms of modeling capability

(@)
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No limit on the number of factors and covariates
Covariates can be modeled in presence of within-subject factors
Pairing for numerator and denominator of F-stats is automatic

Classical methods of correction for sphericity violations:
Greenhouse-Geisser (GG) and Huynh-Feld (HF)

Convenient to perform post hoc tests
Multiple estimates of an effect (e.g., runs) handled automatically

Extra bonus: within-subject multivariate testing complementary
to traditional UVT when sphericity violation is severe



Multivariate Testing under MVM

< Any effect involving a within-subject factor converted to a
multivariate hypothesis: 2 x 3 mixed ANOVA

o Main effect - B - Hy: @,,=0,,,=0,, {—}HO: Apos e, =0, GnegGre,=0
o Interaction Hy: Gypo5-Gp0s=0ineg  Taneg=01neu” Gzneu dmmp
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<> When HDR estimated with multiple basis functions
o Univariate testing by reduction to scalar
Area under the curve (AUC)

Principal component
Summarized measure (Calhoun et al., 2004)

o Comprehensive approach under MVM
AUC, main effect, interaction, MVT

<> Other cases: multiple functional connectivity networks, multi-
modality data analysis



MVM Implementation in AFNI

< Program 3dMVM
Command line
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3dMVM

Symbolic coding for variables and post hoc testing

Variable types

Post hoc tests

-prefix OutputFile -jobs 8 -5C

—“bsVars ’Grp*xAge’ -wsVars ’Cond’ -qVars ’Age’ |

-num glt 4
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Summary

<> Advantages of MVM
o No limit on the number of explanatory variables
o Covariates modeled even in the presence of within-subject factors
o Voxel-wise covariate (e.g., SFNR) allowed
o Voxel-wise sphericity correction for UVT
o Easy and automatic formulation of testing statistics
o Within-subject MVT as complementary testing
o MVT: HDR modeled with multiple basis functions
<> The user only provides information
o Explanatory variable types: between- / within-subject, covariate
o Centering options for quantitative covariates
o Post hoc tests via symbolic coding
o Data table listing variables and input files

< The user does not need to be involved in specifying
o regressors, design matrix, and post hoc tests via regressors
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